446 research outputs found

    Repeatability of the European Standardized Method for Measuring Sound Reflection and Sound Insulation of Noise Barriers

    Get PDF
    The EN 1793-5 and EN 1793-6 standards have been in use for many years as a method for measuring the intrinsic characteristics of noise barriers installed along highways and railways. They require a sound source and a grid of microphones, to be placed near the barrier and in free field conditions, according to predetermined distances. In principle, small errors in positioning the sound source and microphone grid may affect the results obtained. An international round-robin test was carried out in 2012 to evaluate the repeatability and reproducibility of the method, but until now no studies have been carried out to evaluate and compare the repeatability of laboratory versus in-place measurements performed with the same equipment and its variance when an imperfect positioning of sound source and microphones is taken into account. In the present work, multiple series of sound reflection index and sound insulation index measurements performed on noise barriers of the same kind installed in the laboratory or along a highway are presented. The measurements were repeated in different ways: (1) in the laboratory, leaving the source and microphones unmoved to assess the repeatability of the results and of the measurement system under controlled conditions; (2) in the laboratory, repositioning for each measurement the source and microphone grid to assess the robustness of the method under real conditions but in a controlled environment; (3) in situ, along a highway open to traffic, repositioning for each measurement the source and microphone grid to assess the repeatability of the method under real conditions in a critical environment. In both reflection index and sound insulation index measurements, the standard deviation on single-number ratings in all cases examined is well below the value presented in EN 1793-5 and EN 1793-6, which was obtained from statistical analysis of the international round-robin test performed a dozen years ago, suggesting that expert operators with state-of-the art equipment can achieve much better results now

    A Low-Cost System for Quick Measurements on Noise Barriers in Situ

    Get PDF
    This paper describes the development of a low-cost device for measuring the acoustic intrinsic characteristics of noise barriers. The system is based on the Teensy 4.1 microcontroller combined with a few other components. The measurements are carried out using a vertical linear microphone antenna housing 6 microphones and a lightweight loudspeaker, wireless connected to the main unit. Both the main system unit and the amplified loudspeaker are powered from normal 5 V USB battery packs, which are easily rechargeable and interchangeable. The system measures 6 impulse responses using an MLS signal and performs a series of calculations and frequency analyses to characterize the device under test, following a simplified version of the European standards EN 1793-5 and EN 1793-6 (commonly referred to as the ’Adrienne method’). One measurement takes few minutes, obtaining results comparable to those obtained with the Adrienne method, which requires a more complicated and heavy measuring equipment and is much more expensive and time consuming

    Do long-duration GRBs follow star formation?

    Get PDF
    We compare the luminosity function and rate inferred from the BATSE long bursts peak flux distribution with those inferred from the Swift peak flux distribution. We find that both the BATSE and the Swift peak fluxes can be fitted by the same luminosity function and the two samples are compatible with a population that follows the star formation rate. The estimated local long GRB rate (without beaming corrections) varies by a factor of five from 0.05 Gpc^(-3)yr^(-1) for a rate function that has a large fraction of high redshift bursts to 0.27 Gpc^(-3)yr^(-1) for a rate function that has many local ones. We then turn to compare the BeppoSax/HETE2 and the Swift observed redshift distributions and compare them with the predictions of the luminosity function found. We find that the discrepancy between the BeppoSax/HETE2 and Swift observed redshift distributions is only partially explained by the different thresholds of the detectors and it may indicate strong selection effects. After trying different forms of the star formation rate (SFR) we find that the observed Swift redshift distribution, with more observed high redshift bursts than expected, is inconsistent with a GRB rate that simply follows current models for the SFR. We show that this can be explained by GRB evolution beyond the SFR (more high redshift bursts). Alternatively this can also arise if the luminosity function evolves and earlier bursts were more luminous or if strong selection effects affect the redshift determination.Comment: 15 pages, 8 figures, accepted for publication in JCA

    A New Frequency-Luminosity Relation for Long GRBs?

    Full text link
    We have studied power density spectra (PDS) of 206 long Gamma-Ray Bursts (GRBs). We fitted the PDS with a simple power-law and extracted the exponent of the power-law (alpha) and the noise-crossing threshold frequency (f_th). We find that the distribution of the extracted alpha peaks around -1.4 and that of f_th around 1 Hz. In addition, based on a sub-set of 58 bursts with known redshifts, we show that the redshift-corrected threshold frequency is positively correlated with the isotropic peak luminosity. The correlation coefficient is 0.57 +/- 0.03.Comment: 9 pages, 17 figures, 1 table; Accepted for publication in MNRA

    A Burst and Simultaneous Short-Term Pulsed Flux Enhancement from the Magnetar Candidate 1E 1048.1-5937

    Full text link
    We report on the 2004 June 29 burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). We find a simultaneous increase of ~3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (>3.3x10^-8 erg/cm^2 in the 2-20 keV band), had the highest peak flux (59+/-9x10^-10 erg/s/cm^2 in the 2-20 keV band), and the longest duration (>699 s). The long duration of the burst differentiates it from Soft Gamma Repeater (SGR) bursts which have typical durations of ~0.1 s. Bursts that occur preferentially at pulse maximum, have fast-rises and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.Comment: 24 pages, 4 figures, submitted to the Astrophysical Journa

    Prospects for multi-messenger extended emission from core-collapse supernovae in the Local Universe

    Full text link
    Multi-messenger emissions from SN1987A and GW170817/GRB170817A suggest a Universe rife with multi-messenger transients associated with black holes and neutron stars. For LIGO-Virgo, soon to be joined by KAGRA, these observations promise unprecedented opportunities to probe the central engines of core-collapse supernovae (CC-SNe) and gamma-ray bursts. Compared to neutron stars, central engines powered by black hole-disk or torus systems may be of particular interest to multi-messenger observations by the relatively large energy reservoir EJE_J of angular momentum, up to 29\% of total mass in the Kerr metric. These central engines are expected from relatively massive stellar progenitors and compact binary coalescence involving a neutron star. We review prospects of multi-messenger emission by catalytic conversion of EJE_J by a non-axisymmetric disk or torus. Observational support for this radiation process is found in a recent identification of E≃(3.5±1)%M⊙c2{\cal E}\simeq (3.5\pm1)\%M_\odot c^2 in Extended Emission to GW170817 at a significance of 4.2\,σ\sigma concurrent with GRB170817A. A prospect on similar emissions from nearby CC-SNe justifies the need for all-sky blind searches of long duration bursts by heterogeneous computing.Comment: 96 pages, 20 figure

    Constraining duty cycles through a Bayesian technique

    Full text link
    The duty cycle (DC) of astrophysical sources is generally defined as the fraction of time during which the sources are active. However, DCs are generally not provided with statistical uncertainties, since the standard approach is to perform Monte Carlo bootstrap simulations to evaluate them, which can be quite time consuming for a large sample of sources. As an alternative, considerably less time-consuming approach, we derived the theoretical expectation value for the DC and its error for sources whose state is one of two possible, mutually exclusive states, inactive (off) or flaring (on), as based on a finite set of independent observational data points. Following a Bayesian approach, we derived the analytical expression for the posterior, the conjugated distribution adopted as prior, and the expectation value and variance. We applied our method to the specific case of the inactivity duty cycle (IDC) for supergiant fast X-ray transients. We also studied IDC as a function of the number of observations in the sample. Finally, we compare the results with the theoretical expectations. We found excellent agreement with our findings based on the standard bootstrap method. Our Bayesian treatment can be applied to all sets of independent observations of two-state sources, such as active galactic nuclei, X-ray binaries, etc. In addition to being far less time consuming than bootstrap methods, the additional strength of this approach becomes obvious when considering a well-populated class of sources (Nsrc≄50N_{\rm src} \geq 50) for which the prior can be fully characterized by fitting the distribution of the observed DCs for all sources in the class, so that, through the prior, one can further constrain the DC of a new source by exploiting the information acquired on the DC distribution derived from the other sources. [Abridged]Comment: Accepted for publication in Astronomy and Astrophysics. 4 pages, 2 figures, 1 table. Supporting material at http://www.ifc.inaf.it/~romano/Sfxts/IDCSims/index.htm

    Autocorrelation analysis of GRBM–Beppo-SAX burst data

    Get PDF
    An autocorrelation function (ACF) analysis was performed on 17 gamma-ray bursts with known redshift, using data from the GRBM on board Beppo-SAX. When corrected from the cosmic time dilation effect, the ACFs show a bimodal distribution at about half-maximum, in agreement with a previous study based on BATSE and Konus burst data. Although the results show more dispersion, the separation between the two classes is highly significant

    Broad band turbulent spectra in gamma-ray burst light curves

    Full text link
    Broad band power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long GRBs. We describe a chirp search method which steps aside Fourier analysis for signal detection in the Poisson noise-dominated 2 kHz sampled BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog⁥n)O(Nn\log n) operations, where NN is the number of chirp templates and nn is the length of the light curve time series, suited for embarrassingly parallel processing. For detection of individual chirps of duration τ=1\tau=1 s, the method is one order of magnitude more sensitive in SNR than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope up to 1 kHz of turbulence identified in low frequency Fourier analysis. The same continuation is observed in an ensemble averaged spectrum of 40 bright long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included
    • 

    corecore